

# **Modeling Demand for Medical Resources**

#### OSG All Hands Meeting 2021—March 1, 2021

James P. Howard, II—Johns Hopkins Applied Physics Laboratory Anna C. Svirsko—United States Naval Academy

#### **Flattening the Curve**

Protect the Resources to Protect Us All

- China and Italy were the two hardest hit countries at the beginning of COVID-19
  - Both implemented early lockdowns
- Italy was running out of hospital beds and ventilators
  - Hospitals reported new arrivals every 5 minutes



By Johannes Kalliauer via Wikimedia Commons

#### Flattening the curve protects resources, but the allocation still has to work

## **COVID-19 in Maryland**





Counties in Maryland by Incidence of COVID-19 Counties in Maryland by Number of Hospitals



APL,

# **Prior Public Health Optimization Work**

- Resource Allocation
  - American Hospital Capacity and Projected Need for COVID-19 Care
  - Allocation of Intensive Care Unit Beds in Periods of High Demand
  - COVID-19 Capacity Analysis Tool for Hospitals and EDs
- Simulation
  - How Simulation Modelling Can Help Reduce the Impact of COVID-19
  - A Nonhomogeneous Agent-Based Simulation Approach to Modeling the Spread of Disease in a Pandemic Outbreak
  - Locally Informed Simulation to Predict Hospital Capacity Needs During the COVID-19 Pandemic



### The Question

Can we prevent resource shortages from affecting our ability to treat patients?



# **Patient Allocation Model**

- Goals
  - Maximize utilization of hospital beds
  - Minimize patient travel
  - Minimize displacement of future patients
- Decisions
  - What hospital do we send a patient to?
  - What penalty do we incur for potentially displacing patients?
- Implementation
  - Python and Pyomo
  - Solvable with CBC, CPLEX, GLPK

$$\min \sum_{j} d_{j}x_{j} + \sum_{j,t} p_{jt}$$
s.t. 
$$\sum_{j} x_{j} = 1 \forall j$$

$$x_{j} \leq b_{j}x_{j} - o_{j}x_{j} - \sum_{t' \leq t} a_{jt'}x_{j} + \sum_{t' \leq t} d_{jt'}x_{j} + p_{jt} \forall j, t$$

$$x_{j} \in \{0,1\}$$

$$p_{jt} \geq 0$$

# **Simulating the Epidemic**

- Hospital
  - Each hospital in Maryland with ICU beds
  - Count of ICU beds associated
- Population
  - Population taken at level of census tract
- Two hospital assignment policies:
  - Go to closest hospital
  - Allow LP to solve for "best" hospital

- Implementation
  - Discrete event simulation (DES)
  - Used Python and SimPy
- Hospitals are key resource in simulation
  - Time in ICU Weibull scaled by user parameter
- Patients generated at random intervals
  - Time interval exponential with user parameter
  - Tract selection weighted by population
- Metrics:
  - Distance Travelled
  - Number of Patients Displaced
  - Wait Time

#### Goal is to evaluate policies against each other

# **How OSG Helped**

- Monte Carlo simulation
  - Requires many runs
  - All runs are independent of each other
  - Perfect HTC problem
  - OSG made for HTC
- 1600 runs for each policy made
  - Run may take multiple hours
  - Just need to capture metrics

- Python worked well
  - Used virtualenv per OSG documentation
  - All required packages added to the venv
  - Added compiled copy of glpk to venv
    - Felt shady but necessary for Pyomo
  - CSV files with patient stats written
  - Logfiles via spdlog generated
  - Results turned to OSG submit node
    - Processed stats in R
    - Logs provided info to answer questions

## **Distance Travelled**



APL,





## **Positive Wait Times**



# **Limitations and Future Directions**

- Simulation Model
  - Fine tune parameters to generate patients more accurately
  - Working to acquire patient data to generate patients in simulation as actual COVID-19 epidemic
- Determine coefficients for the objective function
  - Distance to the nearest hospital is weighted the same as the penalty
  - We assume that the penalty is the same for each day
  - Adjust the coefficient function to more accurately represent the tradeoff between waiting and travelling
- Policies
  - Send patients to the closest hospital with an open bed
- Metrics
  - Bed Utilization



### JOHNS HOPKINS APPLIED PHYSICS LABORATORY