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Abstract. The goal of Crystal Cube is to create an automated capability for the 
prediction of disruptive events. In this paper we present initial prediction results 
on six prediction categories previously shown to be of interest in the literature. In 
particular, we compare the performance of static classification models, often used 
in previous work for these prediction tasks, with a gated recurrent unit sequence 
model that has the ability to retain information over long periods of time for the 
classification of sequence data. Our results show that the sequence model is com-
parable in performance to the best performing static model (the random forest), 
and that more work is needed to classify highly dynamic prediction categories 
with high probability.   
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1 Introduction 

     The goal of Crystal Cube is to create an automated capability for the prediction of 
disruptive events. The disruptive events we want to predict are wide-ranging and in-
clude armed conflict, insurgency, overthrow of dictators, economic collapse, failed 
states, and novel attacks on the US and other countries. Such a capability has broad 
interest to decision makers and leaders across a wide variety of domains including busi-
ness, military and politics.  
     The ultimate goal of Crystal Cube is to predict a broad variety of types of disruptive 
events with high spatiotemporal resolution and maximum lead time. In this paper, we 
describe our initial approach and preliminary results. We develop models to predict six 
classes of events previously shown to be of interest by the research community: Do-
mestic Political Crisis, Insurgency, International Crisis, Rebellion, Ethnic/Religious Vi-
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olence, and Irregular Leadership Change. We describe these categories in detail in sec-
tion 3.1. In this initial work, we train models to predict each category of disruptive event 
on a country-month basis one month in advance.    
     One challenge in building predictive models for disruptive event prediction is that 
of input data design. Specifically, to train a classifier to predict the occurrence of dis-
ruptive events, a key decision is what features will be given to the model and at what 
time-lags. This decision becomes more challenging as the number of available input 
features grows. Previous studies have addressed this issue by one of two methods: either 
the features are chosen by some feature selection method [1], or the features are chosen 
based on an expert opinion of the important features for the given prediction category 
[2, 3]. Although these decisions address the issues of which features to include, the 
question of what time-lags to include in the feature set is often handled heuristically, 
with several months of lagged data being common. 
     One way to address the challenge of a decision on time-lags is to use a sequence 
modeling approach that is capable of retaining important information over time to help 
make decisions later in the sequence. Hidden Markov, linear state-space models that 
allow information to be passed over time through the incorporation of discrete valued 
hidden variables, have been used previously in event prediction [4]. More recently, re-
current neural networks and their extensions, gated recurrent units and long short-term 
memory units, have been gaining traction in sequence modeling problems due to their 
ability to retain hidden state information in a continuous valued memory variable. How-
ever, to the best of our knowledge, such models have yet to be applied to disruptive 
event prediction. 
     In this paper, we compare five different classification methods for predicting dis-
ruptive events: logistic regression, linear and radial basis function support vector ma-
chines, random forests, and gated recurrent units (GRU). GRU is  a type of non-linear 
sequence model and, to the best of our knowledge, it has not been applied before to the 
problem of prediction of disruptive events. The paper is organized as follows: section 
2 describes the related work, section 3 talks about the methods employed, including a 
description of the data we are using, section 4 describes the results, and section 5 con-
tains our conclusions. 

2 Related Work 

     Our work is related to other projects attempting to predict disruptive events. The 
Integrated Crises Early Warning System Project (ICEWS) uses the ICEWS coded event 
database augmented with macro-structural variables from various data sources like the 
World Bank to predict five of the six disruptive event categories that we predict in this 
paper. The ICEWS prediction categories include Domestic Political Crisis, Insurgency, 
International Crisis, Rebellion, and Ethnic/Religious Violence. The ICEWS data as well 
as the ground truth are available online [5]. 
     Several prediction approaches have been applied to the ICEWS prediction catego-
ries. Montgomery, et al. [2] used ensemble Bayesian model averaging (EBMA) to fuse 
the forecasts of multiple classifiers. Arva, et al. [1] compared the performance of clas-
sification models using inputs derived from the ICEWS event database against another 
coded event database called the Global Database of Events, Language and Tone 



(GDELT). They found that the inputs derived from GDELT provided as good or better 
performance than those from ICEWS. They additionally found that a combination of 
macro-structural variables and a subset of coded-event variables selected through a 
Bayesian model averaging approach, as opposed to all of the available input variables, 
was sufficient for accurate prediction. Neither of these studies considered sequential 
prediction models. 
     Beger, et al. [3] developed a prediction model for Irregular Leadership Change, a 
category not considered in the ICEWS project. They developed an ensemble-based, 
split-population duration model for the prediction problem. Each model within their 
ensemble was trained for a specific “theme” (e.g. public discontent or leadership char-
acteristics). Each thematic model was a split-population duration regression that can be 
thought of as consisting of two components: a probability estimate of a countries be-
longing to either an ”at-risk of failure” class vs. ”not at-risk of failure” and then a re-
gression conditional on this first estimate. Features for each theme were hand-selected 
from three different types of data sources: macro-structural, ICEWS coded event, and 
finally spatial variables for neighboring countries. 
     Qiao, et al. [4] developed a hidden Markov model (HMM) approach for predicting 
a custom truth category of social unrest events that they derived by looking for spikes 
of activitity in the GDELT event database. HMMs are a sequential model; however, 
they have been shown to provide lower performance for classification tasks than dis-
criminative methods [16] like the GRU that we consider here. 

3 Methods 

3.1 Data Sources and Data Preprocessing  
     Crystal Cube uses open data sources to derive two types of input feature variables: 
global coded event data and social and economic meta variables or indicators. The dif-
ference in these two types of input variables and their utility for prediction of disruptive 
events is described in detail in [3]. 
     The coded event features are extracted from the Global Database of Events, Lan-
guage, and Tone (GDELT) [6]. GDELT is an open database that automatically docu-
ments societal activities around the world by applying natural language processing to 
contemporary news articles. Each entry into GDELT represents a unique news event 
and.GDELT provides basic contextual information about an event, and assigns it a code 
from the Conflict and Mediation Event Observations Event and Actor Codebook 
(CAMEO) [7]. CAMEO codes provide sensible categories to understand the nature of 
events. Crystal Cube uses as feature counts of events assigned to distinct CAMEO 
codes (e.g. 1122: accuse of human rights violations) lagged by one, two, and three 
months. 
     Social and economic features are derived from the World Development Indicators 
(WDI) [8] and Worldwide Governance Indicators (WGI) [9] that are compiled by the 
World Bank. The WDI data set includes over 1,000 indicators that estimate the level of 
development a country experiences year-to-year from a variety of perspectives. Exam-
ples of WDI include labor force participation rate by age, educational attainment by 
social class, amount of foreign aid received by a country, and national CO2 emissions. 



WDI indicator values are available from 1960 through 2016. The WGI data set includes 
a small set of aggregates of expert opinions that describe the state of governance within 
a country in a given year. WGI estimates are split across six dimensions: Control of 
Corruption, Government Effectiveness, Political Stability and Absence of Vio-
lence/Terror, Regulatory Quality, Rule of Law, and Voice and Accountability. WGI 
indicator values are available for 1996, 1998, 2000, and 2002-2015. 
     The input data were preprocessed to generate monthly counts for different CAMEO 
codes and to fill in missing values. GDELT events were obtained from the GDELT 1.0 
“reduced” event dataset. This is a preprocessed dataset  which collapses the full GDELT 
database on "DATE+ACTOR1+ACTOR2+EVENTCODE" resulting in a single entry 
per event code per actor per day. These entries were then aggregated into monthly event 
code counts for each country by summing the number of events that occurred during 
the month with the country as either the source or target of the event. The GDELT 
reduced event dataset contains all events from January 1, 1979 through February 17, 
2014. The WDI dataset had a large number of missing values. We removed WDI indi-
cators containing 1000 or more missing values, and inferred missing values for the rest 
of the features by copying the most recent entry for that country. 
     As an additional set of features, we used a subset of the variables provided in the 
replication dataset of Beger, et al. [3]. The features that we included were those derived 
from ICEWS and those related to leadership characteristics within the country, (e.g., 
leader age and months in power). 
     We predict six categories of events that we call prediction categories or truth cate-
gories. The first five categories are derived from the “Events of Interest” ground truth 
dataset developed by the ICEWS project [5]. The five ICEWS prediction categories are: 
Domestic Political Crisis (an in-country political opposition to government not amount-
ing to an insurgency or a rebellion), Insurgency (a coordinated effort to overthrow a 
government), International Crisis (escalating tensions between states / significant de-
ployment of armed forces by one state in another’s territory), Rebellion (seeking inde-
pendence from a government with ongoing organized, violent actions against it), and 
Ethnic/Religious Violence (violence between ethnic or religious groups that is not nec-
essarily related to a government). If analysts concluded that one or more of these events 
occurred in a country over a specific timespan, they indicated it in the data on a month-
by-month basis. Our sixth prediction category is Irregular Leadership Change; we de-
rived this data from the truth set provided in [3]. The period over which we have ground 
truth for these six categories is March 2001 through March 2014. 

3.2 Feature Selection 

     In total, we derive 1160 input features from the data sources described in section 
3.1. In order to find a smaller set of features useful for predicting the truth categories, 
we perform feature selection by evaluating the information gain [14] and mutual infor-
mation [15] between each input feature and each output category. Information gain and 
mutual information both provide a measure of the degree to which one random variable 
provides in predicting another, and are thus often used for feature selection. We perform 
feature selection for two reasons: previous studies have shown that a much smaller set 
of features is sufficient for disruptive event prediction [1], and additionally, some of 
our prediction models will not converge with such a large set of features. 



     For each of the six prediction categories, we computed the information gain, mutual 
information and the number of missing values. We removed all variables containing 
1000 or more missing values, all the variables that had information gain and mutual 
information smaller than a certain threshold. For most of the categories the threshold of 
0.03 was used for both information gain and mutual information. However, for Domes-
tic Political Crisis and Irregular Leadership Change such a threshold would have re-
sulted in no features being chosen.  As such, thresholds 0.01 and 0.0002 were used for 
those two categories, respectively. The highest information gain for any feature was 
0.004 for Irregular Leadership Change, making it evident that this would be the most 
difficult category to predict. Feature selection resulted in choosing 151 variables as in-
puts for Domestic Political Crisis (DPC), 118 as inputs for Ethnic/Religious Violence 
(ERV), 100 as inputs for Insurgency (INS), 135 as inputs for Rebellion (REB), 173 as 
inputs for International Conflict (IC), and 44 as inputs for Irregular Leadership Change 
(ILC).  

3.3 Prediction Models 

     We compare five different prediction models: logistic regression, linear support 
vector machine (SVM), radial basis function support vector machine (RBF SVM), ran-
dom forest (RF), and non-linear gated recurrent unit sequence model (GRU).  
     Logistic regression, support vector machine, and random forest are static classifiers 
that compute a prediction at time t based only on the features at that time. Such static 
classifiers have been used previously for disruptive event prediction [1, 2], and are de-
scribed in detail in the texts [12, 13]. We focus our description in this section on the 
GRU model for disruptive event prediction. 
     The GRU is a sequential model designed for the prediction of sequence data. Figure 
1 shows that, in contrast to static classification models, sequence classification models 
allow information from previous iterations to influence the predictions at the current 
time step through the transfer of latent variables. We believe that this ability to transmit 
information between time-steps is critical for the prediction of disruptive events as 
events can be influenced by sequences of previous events that occur over long-evolving 
time periods.   
     The GRU is defined by the following quantities that are computed at each time step 
as described in [11]: a memory unit 𝒉" ∈ 𝑅%&×(, a candidate memory unit 𝒉" ∈ 𝑅%&×(, 
an update gating unit 𝒛" ∈ [0,1]%&×(, a reset gating unit 𝒓" ∈ [0,1]%0×(, and the input 
𝒙" ∈ 𝑅%0×(. The following equations govern the interactions of these quantities: 
 

𝒉" = 𝒛" ⊙ 𝒉"4( + 1 − 𝒛" ⊙ 𝒉", 
 

𝒉" = tanh	(𝑊 >,? 𝒙" + 𝒓" ⊙ 𝑈(>,?)𝒉"4(), 
 

𝒓" = 𝜎(𝑊 C,? 𝒙" + 𝑈 C,> 𝒉"4(), 
𝒛" = 𝜎(𝑊 D,? 𝒙" + 𝑈 D,> 𝒉"4(), 

 



      
Fig. 1. Static classification models including logistic regression and support vector machines, 
make a prediction for time t+1 based only on the features provided at time t. Time-series classi-
fication models make the decision for time t+1 based on the features at time t and a hidden var-
iable, ht, that carries information from previous time periods. 

where ⊙ is the element-wise matrix product, tanh(⋅) is the element-wise hyperbolic 
tangent function, and 𝜎(⋅) is the element-wise sigmoid function. The interaction be-
tween the memory units and the gating functions control how current and past infor-
mation is stored and transferred and allow the GRU to retain information over long time 
periods. See Cho, et al. [10] or Chung, et al. [11] for more details. Finally, the prediction 
for time t is computed as a function of the current memory: 
 

𝑦" = 𝜎(𝑢H𝒉" + 𝑏). 

4 Results 

     For each method (logit, linear SVM, RBF SVM, RF, GRU), we train six different 
prediction models, one for each prediction category (DPC, ERV, IC, INS, REB, ILC). 
The training data consists of the data from all 158 countries in our dataset from March 
2001 – December 2011, and we test on data from January 2012 – March 2014. For each 
method, the input data for month t, model k consists of the features selected in our 
feature selection for the kth prediction class as described in Section 3.2. Additionally, 
we train all the models with all the features to compare the results with and without 
feature selection.     
   Table 1 contains the area under the curve (AUC) for each of the machine learning 
methods for each of the six classes of events that we are predicting. All the methods 
have the results for the selected set of features. Only GRU, RFs, and linear SVM have 
results for all the features because logistic regression and RBF SVM failed to converge 
when using all the features. 
     The receiver operating characteristic (ROC) curve for each model is presented in 
Figure 2, with AUCs also printed in the legend. For the GRU, RF, and linear SVM, we 
plot only the better of the selected features / all features results based on which feature 
type gave the higher AUC for a given prediction category. From Table 1, we can see 
that this is the all features model for the GRU and RF and the selected features model 
for the linear SVM. 
     The RF and GRU are the best performing methods in terms of AUC. RFs perform 
the best in 4 out of 6 prediction categories, GRU performs the best in 1 out of 6 cate-
gories and in one category the AUC obtained by RFs and GRU is exactly the same 
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(better than any other method).  RFs consistently perform the best when all features are 
used.  For the GRU the message is mixed (for 4 categories they perform better with all 
features, for one category they perform better with selected features, and for one cate-
gory they perform the same).  Linear SVM, RBF SVM and Logit perform the best when 
the feature selection is performed (they even sometimes fail to converge when all fea-
tures are used). 
     Another trend that is notable in the results of Figure 2 and Table 1 is is that there is 
clear differentiation in how predictable the various truth categories are, with ethnic/re-
ligious violence, insurgenceny, and rebellion being highly predictable by some method, 
and domestic political crisis, international conflict, and irregular leadership change be-
ing moderately predictable by some method.   
   Figure 3 shows the ground truth for Nigeria and Pakistan, respectively for each of the 
six prediction categories. ERV, INS and REB, often stay at one level for a long time. 
DPC and IC are much more dynamic. The category that is the most difficult to predict 
is ILC as it encodes events that spike for only a single month. 

     Table 1.  AUC for all prediction categories, all prediction models, and selected vs. all fea-
tures. All features results are not available for the RBF support vector machine and the logit as 
these models failed to converge.   

 
 
 

Domestic 
Political 
Crisis

Ethnic 
Religious 
Violence

Inter-
national 
Conflict Insurgency Rebellion

Irregular 
Leadership 

Change
All Features
  GRU 0.82 0.98 0.86 0.97 0.99 0.79
  Lin SVM 0.74 0.81 0.74 0.90 0.88 0.54
  Random Forest 0.86 0.97 0.89 0.98 0.99 0.83

Selected Features
  GRU 0.80 0.98 0.89 0.93 0.93 0.76
  Lin SVM 0.73 0.95 0.77 0.93 0.88 0.38
  Random Forest 0.87 0.96 0.92 0.98 0.98 0.64
  RBF SVM 0.74 0.83 0.89 0.94 0.94 0.52
  Logistic Regression 0.78 0.95 0.75 0.93 0.90 0.72



 

 
 

Fig. 2. ROC curves on the test data (Jan 2012 – March 2014) for the six different prediction 
categories. AUC values for each prediction model are printed in the legends for the model class. 
 
     Our models do not use the country name as one of the inputs. They also don’t use 
lagged versions of the truth categories DPC, ERV, IC, INS, REB or ILC. If they did, 
we could get a higher AUC for relatively stable categories such as ERV, INS and REB.   
 



 
Fig. 3. Plot of the ground truth for Afghanistan. A zero indicates that the event did not occur in 
the given month and a one indicates that it did. The red horizontal line delineates the training 
period from the test period. 
 

 
Fig. 4. Plot of the ground truth for Nigeria. A zero indicates that the event did not occur in the 
given month and a one indicates that it did. The red horizontal line delineates the training period 
from the test period. 



5 Conclusions 

     Prediction of disruptive international political and security events is of great im-
portance for several reasons. Economists and investment professionals would benefit 
from knowledge of what might happen in many regions in order to forecast how mar-
kets might react. Foreign policy makers might look to prediction in understanding how 
they might better engage with other nations and how U.S. policy might be adjusted. 
Furthermore, national security decision makers could be better informed in their deci-
sion process with foresight into the events in other nations. The deployment of military 
force, the enforcement of sanctions, and the preparation of market and currency disrup-
tion could better be prepared for if prior knowledge were more precisely understood.  
     This paper describes our initial approach and preliminary results for predicting six 
categories of disruptive events in the world (DPC, ERV, IC, INS, REB , ILC). Five  
methods (logit, linear SVM, RBF SVM, RF, GRU) were used to train the  models to 
predict those disruptive events. RFs and GRUs were consistently better than other meth-
ods.  In our future work we are planning to concentrate on predicting the categories that 
are the most difficult to predict (ILC, DPC, IC) due to their dynamic nature in individual 
countries. One approach could be to concentrate on predicting the change from the cur-
rent status instead of predicting the value of the category for the next month. 
     The predictions were made at the country-level, and one month in advance.  In the 
future we are planning to perform predictions at a higher spatiotemporal level (city or 
province) and more than a single month in advance.   
     In the present approach we used several open source data sets: GDELT, WDI and 
WGI. In the future we are also planning to use social media (e.g., Twitter) data sets in 
order to produce additional features for the prediction classifiers. We hope that these 
social media-based features will provide new and discriminative information for pre-
diction that can complement our current input data sources.  
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