HOW TO’S

Setting up Git and
Mercurial Servers

GitHub provides an excellent web-based interface to Git with
extensive project management tools. Bitbucket provides an
equally excellent web-based interface for Mercurial.

What you will learn...

« How to configure permissions on Git and Mercurial servers

- How to manage users and groups for DVCS platforms

« Conceptual differences in managing DVCS from CVS and
Subversion

What you should know...

» How to install applications

+ How to manage users, groups, and file permissions
» How to use Git and Mercurial

owever, project requirements, management
H concerns, or security needs may prevent the

use of public storage tools for distributed version
control. Under these circumstances, both Git and Mercurial
are easy to set up and use on a BSD-based server. The
niceties of the web interfaces are lost, but the full power of
both distributed version control system (DVCS) platforms
are available at the command line.

This article outlines the basic directory and permissions
structure necessary to maintain a Git or Mercurial server
on a BSD platoform and accessible over SSH. However,
this article assumes are you already familiar with how
DVCS platforms operate and with server and SSH
operations.

In addition, this article assumes you are familiar with
installing applications through the ports and package
systems, as appropriate, for your operating system. In
general, these tips are equally valid on other Unix-like
platforms, as well.

Incidentally, there is no reason not to manage both
Git and Mercurial servers on a single server. The two
DVCS platforms operate independently of each other
and do not interfere with each other. This is valuable if
local conventions cannot be mandated and cooperation
with external entities mandates working with both Git
and Mercurial. Because Git and Mercurial repositories
ultimately form a mesh or star network of patches

BSD

MAGAZINE

"

and forks, working with an external repository can be
aided by maintaining a local server which centralizes
synchronization.

Installation
Unlike some systems, neither Git nor Mercurial require
separate servers in the usual sense. Both can operate
over SSH and HTTP. Git can also transport version control
information over a native protocol, but this protocol’s server
is bundled directly into the Git client. However, both require
their respective client to be installed on the server to operate
it. Because of this, installation on a BSD-based server is as
simple as installing the clients. Both Git and Mercurial can
be installed using your BSD'’s native application packaging
system or can be configured and installed directly from the
package distributions provided by each development group.
Of note, Git is mostly C language and consists of many
different programs each of which provides small parts of
program’s subcommands. Some are implemented in Perl
and as shell scripts. In contrast, Mercurial is pure Python
and requires a complete Python installation as a result.
Both are relatively easy to install when using the native
packaging system.

A Repository Home

One of the key aspects of both Git and Mercurial is how
they store their repositories. If you are familiar with CVS

03/2011



Setting up Git and Mercurial Servers

or Subversion, these turn version control on its ear. For
CVS and Subversion, the working copy after a checkout
is an image of the repository at a certain point in time.
The history is stored in a central location. DVCS systems
change this by packaging the history with each copy of
the repository.

With CVS and Subversion, the server copy is special
and cannot be treated as a working copy. A Git or
Mercurial server is a copy of the repository just like any
other, though the local checkout may not be present.
Because of this, a Git or Mercurial central repository
requires minimal planning and foresight. Indeed, the
idea of a central repository in Git and Mercurial is
more of a social convention than something technically
enforced.

The first question to answer is where will storage of these
repositories be kept. It is not unreasonable to store them
with user accounts under /nome, USING /home/git @and /home/
ng for each. Given the nature of source code repositories,
storing them under /var or /var/ab is also reasonable. In
this case, | have used /var for both repositories leading to
the directories /var/git and /var/ng.

In each case, | created symbolic links from /git to
/var/git @nd /ng 10 /var/ng. This shortening will be useful
in creating remote paths. When tunnelling Git over SSH,
paths are mapped one-to-one and shorter paths are
desirable. With symbolic links in place, the path becomes
user@host: /git/repo. Repositories on other locations can be
accessed in the usual way, with one in howardjp’s home
directory being addressed as user@host:/home/howardjp/
repo.

Mercurial offers the same advantage, but with a slightly
different nomenclature. When using SSH, Mercurial
requires a protocol specification that Git does not, so
SSH-tunnelled Mercurial connections resemble ssn://
user@host//hg/repo.

Managing Repository Permissions

Repositories themselves are managed in the tradition BSD
way. In my example, | have created two user accounts to
manage these storage areas. From /etc/passud:

git:*:902:99:Git Repository Owner:/var/git:/usr/sbin/
nologin
hg:*:903:99:Mercurial Repository Owner:/var/hg:/usr/sbin/

nologin

Like all properly managed role accounts, these accounts
are disabled through the use of an asterisk in the
password field. Additionally, both have their shells set
to nologin, which automatically disconnects a user when

www.bsdmag.org

launches the shell. The only purpose of these accounts
is to own the parent directory for repositories and they
could be merged into one account, if that is the local
preference.

The group number listed, 99, is a group called src, which
is otherwise unremarkable. Any group name and number
will do. Users can be added to the src group to give them
access to both Mercurial and Git repositories. Further
restrictions of access are possible with the usual BSD
group mechanisms. If ACLs are available due to special
filesystem capabilities, they will be honored, as well.

But if a repository is meant to be shared among multiple
users, it should have its permissions set appropriate to
ensure all necessary users share read and write access
correctly. The logic way to manage this is by setting the
group on a repository to a project’s group and making
the repository readable and writable by the group. This
must be done recursively on all files in the repository
directory.

Users familiar with administering CVS central
repositories can lock down individual components within
the CVS tree and mark off sections of the tree for editing
by some users through BSD’s permissions structure. With
both Git and Mercurial (and, incidentally, Subversion), this
type of restriction is not possible. Git and Mercurial use an
internal database format for storing changes leading to an
all or nothing permissions situation. Environments which
require multiple sets of editing permissions on repositories
are best off dividing projects into multiple repositories.

Conclusions

These basic steps will help ensure a smoothly running
and easier to maintain Git or Mercurial server. However,
these tips cannot address every possible issue or local
configuration requirement you may encounter in building
a Git or Mercurial server. But these tips will provide the
foundation for a sound server installation for DVCS
platforms. Fortunately, unlike other popular version control
systems, Git and Mercurial will continue functioning when
the server is unavailable allowing the opportunity to fix
mistakes.

JAMES P. HOWARD, Il

The author is a senior analyst in Washington, DC, in the United
States where he focuses on statistical and mathematical
systems. He can be reached at jh@jameshoward.us or via Twitter
@howardjp.

MAGAZINE

BSD |



