Use Simpson's 3/8 rule to integrate a function
simp38(f, a, b, m = 100)
f | function to integrate |
---|---|
a | the a-bound of integration |
b | the b-bound of integration |
m | the number of subintervals to calculate |
the value of the integral
The simp38
function uses Simpson's 3/8 rule to calculate the
integral of the function f
over the interval from a
to b
. The parameter m
sets the number of intervals
to use when evaluating. Additional options are passed to the
function f
when evaluating.
Other integration:
adaptint()
,
gaussint()
,
giniquintile()
,
mcint()
,
midpt()
,
revolution-solid
,
romberg()
,
simp()
,
trap()
Other newton-cotes:
adaptint()
,
giniquintile()
,
midpt()
,
romberg()
,
simp()
,
trap()