A Theorem on the Consumer Surplus

Thursday April 03, 2014

•  demand â€¢  economic analysis â€¢  economics â€¢  environmental policy â€¢  environmental studies â€¢  flood studies â€¢  mathematics â€¢  statistics â€¢ 

Theorem. Let m be a scaling factor and y=β0+β1x1+⋯ be a generalized linear model such that y is the amount of a good or service purchased and x is the price per unit of the good or service. If y′=β0′+β1′x1′+⋯ such that y′=my and x1′=x1/m, then,

−y^′22β1′^=−y^22β1^.

If y′=β0∗+β1∗x1+⋯, then β1∗=mβ1.1 Similarly, if y=β0∗+β1∗x1′+⋯, then β1∗=mβ1. Therefore, if y′=β0′+β1′x1′+⋯, then β1′=m2β1. Accordingly,

−y^′22β1′^=−(my^)22m2β1^=−m2y^22m2β1^=−y^22β1^.
  1. Jeffrey Wooldridge, Introductory econometrics: A modern approach,</i> _Cengage Learning, 2012, p. 40. â†©

Democracy must prevail. Stand with Ukraine.